Part Number Hot Search : 
M25PP TPCA8 SK3BA 2SC4924 78B03T STA305A 0R048 D5152
Product Description
Full Text Search
 

To Download MAX14803CCM Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 19-4484; Rev 0; 4/09
Low-Charge Injection, 16-Channel, High-Voltage Analog Switches
General Description
The MAX14800-MAX14803 provide high-voltage switching on 16 channels for ultrasonic imaging and printer applications. The devices utilize HVCMOS process technology to provide 16 high-voltage lowcharge-injection SPST switches, controlled by a digital interface. Data is clocked into an internal 16-bit shift register and retained by a programmable latch with enable and clear inputs. A power-on reset function ensures that all switches are open on power-up. The MAX14800-MAX14803 operate with a wide range of high-voltage supplies including: VPP/VNN = +100V/ -100V, +200V/0V, and +40V/-160V. The digital interface operates from a separate +2.7V to +5.5V VDD supply. Digital inputs DIN, CLK, LE, and CLR operate on the VDD supply voltage. The MAX14801/MAX14803 provide integrated 35k bleed resistors on each switch terminal to discharge capacitive loads. The MAX14802/MAX14803 provide integrated clamping diodes for overvoltage protection against positive overshoot. The MAX14800-MAX14803 are available in the 48-pin TQFP package. All devices are specified for the commercial 0C to +70C temperature range.
Features
o Integrated Overvoltage Protection (MAX14802/ MAX14803) o 20MHz Serial Interface (5V) o HVCMOS Technology for High Performance o Individually Programmable High-Voltage Analog Switches o Very Low 5A (typ) Quiescent Current o DC-to-20MHz Low-Voltage Analog Signal Frequency Range o 2.7V to 5.5V Logic Supply Voltage o Low-Charge Injection, Low-Capacitance RL Switches o -77dB (typ) Off-Isolation at 5MHz (RL = 50) o Daisy-Chainable Serial Interface o Flexible High-Voltage Supplies (VPP - VNN = 250V)
Pin Configuration appears at end of data sheet.
MAX14800-MAX14803
Applications
Ultrasound Imaging Printers
Ordering Information/Selector Guide
PART MAX14800CCM+* MAX14801CCM+* MAX14802CCM+ MAX14803CCM+ SWITCH CHANNELS 16 16 16 16 BLEED RESISTOR No Yes No Yes OVP No No Yes Yes SECOND SOURCE HV2601 HV2701 -- -- PIN-PACKAGE 48 TQFP 48 TQFP 48 TQFP 48 TQFP TEMP RANGE 0C to +70C 0C to +70C 0C to +70C 0C to +70C
+Denotes a lead(Pb)-free/RoHS-compliant package. *Future product--contact factory for availability. Parts with extended temperature range (-40C to +85C) are available upon request.
________________________________________________________________ Maxim Integrated Products
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.
Low-Charge Injection, 16-Channel, High-Voltage Analog Switches MAX14800-MAX14803
ABSOLUTE MAXIMUM RATINGS
(All voltages referenced to GND.) VDD Logic-Supply Voltage .......................................-0.3V to +7V VPP - VNN Supply Voltage ....................................................260V VPP Positive-Supply Voltage.................................-0.3V to +220V VNN Negative-Supply Voltage ...............................-0.3V to -220V Logic Inputs (LE, CLR, CLK, DIN, DOUT)................-0.3V to +7V COM_, NO_ (MAX14800/MAX14801) ...........(-0.3V + VNN) to (VNN + 200V) COM_, NO_ (MAX14802/MAX14803).........(-0.3V + VNN) to the minimum of [(VNN + 200V) or (VPP + 0.3V)] Peak Analog Signal Current Per Channel ................................3A Continuous Power Dissipation (TA = +70C) 48-Pin TQFP (derate 22.7mW/C above +70C).........1818mW Junction-to-Ambient Thermal Resistance (JA) (Note 1) 48-Pin TQFP ..................................................................44C/W Junction-to-Case Thermal Resistance (JC) (Note 1) 48-Pin TQFP ..................................................................10C/W Operating Temperature Range...............................0C to +70C Storage Temperature Range .............................-65C to +150C Junction Temperature ..................................................... +150C Lead Temperature (soldering, 10s) .................................+300C
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS
(VDD = +2.7V to +5.5V, VPP = +40V to VNN + 250V, VNN = -40V to -160V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25C.) (Note 2)
PARAMETER POWER SUPPLIES VDD Supply Voltage VPP Supply Voltage VNN Supply Voltage VDD Supply Quiescent Current VDD Supply Dynamic Current VPP Supply Quiescent Current VPP Supply Dynamic Current (All Channel Switching Simultaneously) VNN Supply Quiescent Current VNN Supply Dynamic Current (All Channel Switching Simultaneously) ANALOG SWITCH COM_, NO_ Analog Signal Range VCOM_, VNO_ min of (VNN + 200V) or (VPP 10V) VDD VPP VNN IDDQ IDD IPPQ VDD = +5V, LE = +5V, fCLK = 5MHz All switches remain on or off, ICOM_ = 5mA VPP = +40V, VNN = -160V, fCOM_ = 50kHz IPP VPP = +100V, VNN = -100V, fCOM_ = 50kHz VPP = +160V, VNN = -40V, fCOM_ = 50kHz INNQ All switches remain on or off, ICOM_ = 5mA VPP = +40V, VNN = -160V, fCOM_ = 50kHz INN VPP = +100V, VNN = -100V, fCOM_ = 50kHz VPP = +160V, VNN = -40V, fCOM_ = 50kHz 2.3 0 3.4 0 +2.7 +40 -160 +100 -100 +5.5 VNN + 250 0 5 0.5 10 4 6 8 10 5 4 3 mA A mA V V V A mA A SYMBOL CONDITIONS MIN TYP MAX UNITS
(Note 3)
VNN
V
2
_______________________________________________________________________________________
Low-Charge Injection, 16-Channel, High-Voltage Analog Switches
ELECTRICAL CHARACTERISTICS (continued)
(VDD = +2.7V to +5.5V, VPP = +40V to VNN + 250V, VNN = -40V to -160V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25C.) (Note 2)
PARAMETER SYMBOL CONDITIONS VPP = +40V, VNN = -160V, VCOM_ = 0 Small-Signal Switch On-Resistance RONS ICOM_ = 5mA ICOM_ = 200mA MIN TYP 26 22 22 18 20 16 5 15 30 40 0 -30 3 50 2 +30 MAX 48 32 30 27 30 27 % k A mV A UNITS
MAX14800-MAX14803
VPP = +100V, VNN = -100V, ICOM_ = 5mA VCOM_ = 0 ICOM_ = 200mA VPP = +160V, VNN = -40V, VCOM_ = 0 ICOM_ = 5mA ICOM_ = 200mA
Small-Signal Switch On-Resistance Matching Large-Signal Switch On-Resistance Shunt Resistance Switch-Off Leakage Switch-Off DC Offset Switch-Output Peak Current (Note 4) Switch-Output COM_ Isolation Diode Current (Note 4)
RONS RONL RINT ICOM_(OFF), INO_(OFF)
VPP = +100V, VNN = -100V, VCOM_ = 0, ICOM_ = 5mA VCOM_ = VPP - 10V, ICOM_ = 1A NO_ or COM_ to GND (MAX14801/MAX14803), switch off VCOM_, VNO_ = +100V or unconnected RL = 100k 100ns pulse width, 0.1% duty cycle 300ns pulse width, 2% duty cycle (MAX14802/MAX14803)
500
mA
SWITCH DYNAMIC CHARACTERISTICS Turn-On Time Turn-Off Time Output Switching Frequency Maximum VCOM_, VNO_ Slew Rate Off-Isolation Crosstalk COM_, NO_ OffCapacitance (Note 4) COM_ On-Capacitance (Note 4) Output-Voltage Spike (Note 4) Small-Signal Analog Bandwidth tON tOFF fSW dV/dt VISO VCT VNO_ = +100V, RL = 10k, VNN = -100V VNO_ = +100V, RL = 10k, VNN = -100V Duty cycle = 50% (Note 4) f = 5MHz, RL = 1k, CL = 15pF f = 5MHz, RL = 50 f = 5MHz, RL = 50 4 20 -150 20 20 -50 -77 -80 11 36 18 56 +150 2 2 3.5 3.5 50 s s kHz V/ns dB dB pF pF mV MHz
CCOM_(OFF), VCOM_ = 0, VNO_ = 0, f = 1MHz CNO_(OFF) CCOM_(ON) VSPK fBW VCOM_ = 0, f = 1MHz RL = 50 VPP = +100V, VNN = -100V, CL = 200pF
_______________________________________________________________________________________
3
Low-Charge Injection, 16-Channel, High-Voltage Analog Switches MAX14800-MAX14803
ELECTRICAL CHARACTERISTICS (continued)
(VDD = +2.7V to +5.5V, VPP = +40V to VNN + 250V, VNN = -40V to -160V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25C.) (Note 2)
PARAMETER Charge Injection LOGIC LEVELS Logic-Input Low Voltage Logic-Input High Voltage Logic-Output Low Voltage Logic-Output High Voltage Logic-Input Capacitance (Note 4) Logic-Input Leakage VIL VIH VOL VOH CIN IIN -1 ISINK = 1mA ISOURCE = 0.75mA VDD 0.5 10 +1 VDD 0.75 0.4 0.75 V V V V pF A SYMBOL Q CONDITIONS VPP = +40V, VNN = -160V, VCOM_ = 0 VPP = +100V, VNN = -100V, VCOM_ = 0 VPP = +160V, VNN = -40V, VCOM_ = 0 MIN TYP 820 600 350 pC MAX UNITS
TIMING CHARACTERISTICS
(VDD = +2.7V to +5.5V, VPP = +40V to VNN + 200V, VNN = -40V to -160V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25C.) (Note 2)
PARAMETER LOGIC TIMING (Figure 1) CLK Frequency DIN to CLK Setup Time DIN to CLK Hold Time CLK to LE Setup Time LE Low-Pulse Width CLR High-Pulse Width CLK Rise and Fall Times CLK to DOUT Delay fCLK tDS tDH tCS tWL tWC tR, tF tDO VDD = +5V 10% VDD = +3V 10% VDD = +5V 10% VDD = +3V 10% VDD = +5V 10% VDD = +3V 10% VDD = +5V 10% VDD = +3V 10% VDD = +5V 10% VDD = +3V 10% VDD = +5V 10% VDD = +3V 10% VDD = +5V 10% VDD = +3V 10% VDD = +5V 10% VDD = +3V 10% 6 12 10 16 3 3 36 65 14 22 20 40 50 50 42 80 20 10 MHz ns ns ns ns ns ns ns SYMBOL CONDITIONS MIN TYP MAX UNITS
Note 2: All devices are 100% tested at TA = +70C. Limits over the operating temperature range are guaranteed by design and characterization. Note 3: The analog signal input VCOM_ and VNO_ must satisfy VNN (VCOM_, VNO_) VPP, or remain unconnected during power-up and power-down. Note 4: Guaranteed by characterization; not production tested. 4 _______________________________________________________________________________________
Low-Charge Injection, 16-Channel, High-Voltage Analog Switches
Test Circuits
VPP - 10V RL 100k NO_ VOUT NO_ VOUT NO_
MAX14800-MAX14803
ISOL +100V -100V
COM_
COM_ RL 100k
COM_
+100V VPP VNN -100V VPP VNN
MAX14800- MAX14803
VDD GND 5V VPP VNN VPP VNN
MAX14800- MAX14803
VDD GND 5V
+100V VPP VNN -100V VPP VNN
MAX14800- MAX14803
VDD GND 5V
SWITCH OFF LEAKAGE
DC OFFSET ON/OFF
tON/tOFF TEST CIRCUIT
VOUT = 10VP-P AT 5MHz NO_ VOUT RL VOUT COM_ COM_ IID NO_
VPP
VOUT = 10VP-P AT 5MHz NO_ COM_ 50 NO_ 50 COM_
VNN
MAX14800- MAX14803
VPP VNN VPP VNN VDD GND 5V VPP VNN
MAX14800- VNN MAX14803
VPP VNN VDD GND 5V
MAX14800- MAX14803
VPP VNN VPP VNN VDD GND 5V
V VISO = 20LOG OUT VIN OFF ISOLATION
ISOLATION DIODE CURRENT
V VCT = 20LOG OUT VIN CROSSTALK
+VSPK VOUT VOUT 100pF COM_ VCOM_ NO_ -VSPK 50 RL 1k COM_ VOUT NO_
MAX14800- MAX14803
VPP VNN VPP VNN VDD GND VDD
MAX14800- MAX14803
VPP VNN VDD GND 5V
VPP VNN
Q = 1000pF x VOUT CHARGE INJECTION
OUTPUT-VOLTAGE SPIKE
_______________________________________________________________________________________
5
Low-Charge Injection, 16-Channel, High-Voltage Analog Switches MAX14800-MAX14803
Typical Operating Characteristics
(VDD = +3V, VPP = +100V, VNN = -100V, TA = +25C, unless otherwise noted.)
ON-RESISTANCE vs. ANALOG SIGNAL VOLTAGE
MAX14800 toc01
ON-RESISTANCE vs. ANALOG SIGNAL VOLTAGE
VPP = +100V, VNN = -100V 140 ON-RESISTANCE () 120 100 80 60 TA = +70C 40 20 0 TA = 0C -100 -50 0 VCOM () 50 100 TA = +25C
MAX14800 toc02
TURN-ON/TURN-OFF TIME vs. ANALOG SIGNAL VOLTAGE
MAX14800 toc03
180 160 140 ON-RESISTANCE () 120 100 80 60 40 20 0 -150 -100 -50 0 VCOM (V) 50 100 VPP = +40V, VNN = -160V VPP = +160V, VNN = -40V VPP = +100V, VNN = -100V
160
5 TURN-ON/TURN-OFF TIME (s)
4
3 tOFF 2
1 tON 0 -90 -60 -30 0 VNO (V) 30 60 90
150
OFF-ISOLATION vs. FREQUENCY
MAX14800 toc04
LEAKAGE CURRENT vs. TEMPERATURE
MAX14800 toc05
LOGIC SUPPLY CURRENT vs. SUPPLY VOLTAGE
0.7 IDDQ SUPPLY CURRENT (A) 0.6 0.5 0.4 0.3 0.2 0.1 0 TA = 0C TA = +25C TA = +70C
MAX14800 toc06
0
5.0 4.5 LEAKAGE CURRENT (nA) 4.0 3.5
OFF-ISOLATION (dB)
-20
ICOM_(ON) (VCOM = +90V) ICOM_(ON) (VCOM = -90V) ICOM_(ON) (VCOM = 0)
0.8
-40 TA = +25C
ICOM_(OFF) (VCOM = -90V) 3.0 2.5 ICOM_(OFF) (VCOM = 0) ICOM_(OFF) (VCOM = +90V)
-60
TA = +70C
TA = 0C -80 0.001 2.0 0.01 0.1 1 10 100 0 10 20 30 40 50 60 70 FREQUENCY (MHz) TEMPERATURE (C) 2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5
VDD SUPPLY VOLTAGE (V)
HIGH-VOLTAGE SUPPLY CURRENT vs. TEMPERATURE
MAX14800 toc07
LOGIC SUPPLY CURRENT vs. SERIAL-CLOCK FREQUENCY
MAX14800 toc08
HIGH-VOLTAGE SUPPLY CURRENT vs. SWITCHING FREQUENCY
ALL SWITCHES SWITCHING TA = +25C SUPPLY CURRENT (mA) 6
MAX14800 toc09
0.20 VPP = +100V VNN = -100V SUPPLY CURRENT (A) 0.15 IPP 0.10
250 TA = +70C IDD SUPPLY CURRENT (A) 200 TA = +25C
8
150 TA = 0C 100
4 IPP 2 INN
0.05
INN
50
0 0 10 20 30 40 50 60 70 TEMPERATURE (C)
0 0 2 4 6 8 10 CLK SERIAL-CLOCK FREQUENCY (MHz)
0 0 10 20 30 40 50 SWITCHING FREQUENCY (kHz)
6
_______________________________________________________________________________________
Low-Charge Injection, 16-Channel, High-Voltage Analog Switches
Pin Description
PIN 1, 2, 14, 16, 24, 35, 36 3 4 5 6 7 8 9 10 11 12 13 15 17 18 19 20 21 22 23 25 26 27 28 29 30 31 32 33 34 37 NAME N.C. COM4 NO4 NO3 COM3 NO2 COM2 COM1 NO1 NO0 COM0 VNN VPP GND VDD DIN CLK LE CLR DOUT COM15 NO15 NO14 COM14 COM13 NO13 COM12 NO12 NO11 COM11 COM10 No Connection. Not internally connected. Analog Switch 4--Common Terminal Analog Switch 4--Normally Open Terminal Analog Switch 3--Normally Open Terminal Analog Switch 3--Common Terminal Analog Switch 2--Normally Open Terminal Analog Switch 2--Common Terminal Analog Switch 1--Common Terminal Analog Switch 1--Normally Open Terminal Analog Switch 0--Normally Open Terminal Analog Switch 0--Common Terminal Negative High-Voltage Supply. Bypass VNN to GND with a 0.1F or greater ceramic capacitor. Positive High-Voltage Supply. Bypass VPP to GND with a 0.1F or greater ceramic capacitor. Ground Digital Supply Voltage. Bypass VDD to GND with a 0.1F or greater ceramic capacitor. Serial-Data Input Serial-Clock Input Active-Low, Latch-Enable Input Latch Clear Input Serial-Data Output Analog Switch 15--Common Terminal Analog Switch 15--Normally Open Terminal Analog Switch 14--Normally Open Terminal Analog Switch 14--Common Terminal Analog Switch 13--Common Terminal Analog Switch 13--Normally Open Terminal Analog Switch 12--Common Terminal Analog Switch 12--Normally Open Terminal Analog Switch 11--Normally Open Terminal Analog Switch 11--Common Terminal Analog Switch 10--Common Terminal FUNCTION
MAX14800-MAX14803
_______________________________________________________________________________________
7
Low-Charge Injection, 16-Channel, High-Voltage Analog Switches MAX14800-MAX14803
Pin Description (continued)
PIN 38 39 40 41 42 43 44 45 46 47 48 NAME NO10 COM9 NO9 COM8 NO8 NO7 COM7 NO6 COM6 NO5 COM5 Analog Switch 10--Normally Open Terminal Analog Switch 9--Common Terminal Analog Switch 9--Normally Open Terminal Analog Switch 8--Common Terminal Analog Switch 8--Normally Open Terminal Analog Switch 7--Normally Open Terminal Analog Switch 7--Common Terminal Analog Switch 6--Normally Open Terminal Analog Switch 6--Common Terminal Analog Switch 5--Normally Open Terminal Analog Switch 5--Common Terminal FUNCTION
DIN
DN+1
50%
DN
50%
DN-1
LE
50%
50% tWL tCS
CLK tDS
50% tDH tDO
50%
DOUT
50% tOFF OFF tON
SWITCH ON CLR 50% tWC 50%
90% 10%
Figure 1. Serial Interface Timing
8
_______________________________________________________________________________________
Low-Charge Injection, 16-Channel, High-Voltage Analog Switches
Detailed Description
The MAX14800-MAX14803 provide high-voltage switching on 16 channels for ultrasound imaging and printer applications. The devices utilize HVCMOS process technology to provide 16 high-voltage lowcharge-injection SPST switches, controlled by a digital interface. Data is clocked into an internal 16-bit shift register and retained by a programmable latch with enable and clear inputs. A power-on-reset function ensures that all switches are open on power-up. The MAX14800-MAX14803 operate with a wide range of high-voltage supplies including: VPP/VNN = +100V/ -100V, +200V/0V, or +40V/-160V. The digital interface operates from a separate +2.7V to +5.5V VDD supply. Digital inputs DIN, CLK, LE, and CLR operate on the V DD supply voltage. The MAX14801/MAX14803 provide integrated 35k bleed resistors on each switch terminal to discharge capacitive loads. The MAX14802/ MAX14803 provide integrated clamping diodes for overvoltage protection against positive overshoot. The MAX14802/MAX14803 feature clamping diodes (at the COM_). These clamping diodes provide overvoltage protection against positive overshoot.
Bleed Resistors (MAX14801/MAX14803)
The MAX14801/MAX14803 feature integrated 35k bleed resistors to discharge capacitive loads such as piezoelectric transducers. Each analog switch terminal is connected to GND with a bleed resistor.
MAX14800-MAX14803
Overvoltage Protection (MAX14802/MAX14803)
The MAX14802/MAX14803 feature clamping diodes (at the COM_). These clamping diodes provide overvoltage protection against positive overshoot.
Serial Interface
The MAX14800-MAX14803 are controlled by a serial interface with a 16-bit serial shift register and transparent latch. Each of the sixteen data bits controls a single analog switch (see Table 1). Data on DIN is clocked with the most significant bit (MSB) first into the shift register on the rising edge of CLK. Data is clocked out of the shift register onto DOUT on the rising edge of CLK. DOUT reflects the status of DIN, delayed by 16 clock cycles (see Figures 1 and 2).
Latch Enable (LE)
Drive LE logic-low to change the contents of the latch and update the state of the high-voltage switches (Figure 2). Drive LE logic-high to freeze the contents of the latch and prevent changes to the switch states. To reduce noise due to clock feedthrough, drive LE logichigh while data is clocked into the shift register. After the data shift register is loaded with valid data, pulse LE logic-low to load the contents of the shift register into the latch.
Analog Switch
The MAX14800-MAX14803 allow a peak-to-peak analog signal range from VNN to the minimum of either VNN + 200V or VDD. Analog switch inputs must be unconnected, or satisfy VNN (VCOM_, VNO_) VPP during powerup and power-down.
High-Voltage Supplies
The MAX14800-MAX14803 allow a wide range of highvoltage supplies. The devices operate with VNN from -160V to 0 and VPP from +40V to VNN + 250V. When VNN is connected to GND (single-supply applications), the devices operate with VPP up to +200V. The VPP and VNN high-voltage supplies are not required to be symmetrical, but the voltage difference (VPP - VNN) must not exceed 250V.
Latch Clear (CLR)
The MAX14800-MAX14803 feature a latch clear input. Drive CLR logic-high to reset the contents of the latch to zero and open all switches. CLR does not affect the contents of the data shift register. Pulse LE logic-low to reload the contents of the shift register into the latch.
Power-On Reset
The MAX14800-MAX14803 feature a power-on-reset circuit to ensure all switches are open at power-on. The internal 16-bit serial shift register and latch are set to zero on power-up.
_______________________________________________________________________________________
9
Low-Charge Injection, 16-Channel, High-Voltage Analog Switches MAX14800-MAX14803
LE
CLK
DIN
D15 MSB
D14
D13
D1
D0 LSB
DOUT
D15
D14
D13
D1
D0
D15
DATA FROM PREVIOUS DATA BYTE POWER-UP DEFAULT: D15-D0 = 0
Figure 2. Latch Enable Interface Timing
Table 1. Serial Interface Programming (Notes 5-10)
DATA BITS D0 (LSB) L H L H L H L H L H L H L H L H X X X X X X X X X X X X X X X X D1 D2 D3 D4 D5 D6 D7 CONTROL BITS LE L L L L L L L L L L L L L L L L H X CLR SW0 SW1 L L L L L L L L L L L L L L L L L H OFF OFF OFF HOLD PREVIOUS STATE OFF OFF OFF OFF OFF OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON SW2 FUNCTION SW3 SW4 SW5 SW6 SW7
10
______________________________________________________________________________________
Low-Charge Injection, 16-Channel, High-Voltage Analog Switches MAX14800-MAX14803
Table 1. Serial Interface Programming (Notes 5-10) (continued)
DATA BITS D8 L H L H L H L H L H L H L H L H X X X X X X X X X X X X X X X X D9 D10 D11 D12 D13 D14 D15 (MSB) CONTROL BITS LE L L L L L L L L L L L L L L L L H X CLR SW8 SW9 L L L L L L L L L L L L L L L L L H OFF OFF OFF HOLD PREVIOUS STATE OFF OFF OFF OFF OFF OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON SW10 FUNCTION SW11 SW12 SW13 SW14 SW15
X = Don't care.
The 16 switches operate independently. Serial data is clocked in on the rising edge of CLK. The switches go to a state retaining their present condition on the rising edge of LE. When LE is low, the shift register data flows through the latch. Note 8: DOUT is high when switch 15 is on. Note 9: Shift register clocking has no effect on the switch states if LE is high. Note 10: The CLR input overrides all other inputs. Note 5: Note 6: Note 7:
______________________________________________________________________________________
11
Low-Charge Injection, 16-Channel, High-Voltage Analog Switches MAX14800-MAX14803
Applications Information
For medical ultrasound applications, see Figures 4, 5, and 6. and CLR inputs of all devices, and drive LE logic-low to update all devices simultaneously. Drive CLR high to open all the switches simultaneously. Additional shift registers can be included anywhere in series with the MAX14800-MAX14803 data chain.
Logic Levels
The MAX14800-MAX14803 digital interface inputs CLK, DIN, LE, and CLR operate on the VDD supply voltage.
Supply Sequencing and Bypassing
The MAX14800-MAX14803 do not require special sequencing of the VDD, VPP, and VNN supply voltages; however, analog switch inputs must be unconnected, or satisfy VNN (VCOM_, VNO_) VPP during power-up and power-down. Bypass VDD, VPP, and VNN to GND with a 0.1F ceramic capacitor as close as possible to the device.
Daisy-Chaining Multiple Devices
Digital output DOUT is provided to allow the connection of multiple MAX14800-MAX14803 devices by daisychaining (Figure 3). Connect each DOUT to the DIN of the subsequent device in the chain. Connect CLK, LE,
Application Diagrams
U10 U11 U1n
DIN1
DIN
DOUT
DIN
DOUT
DIN
DOUT
CLK LE
CLK LE
MAX14800- MAX14803
CLK LE
MAX14800- MAX14803
CLK LE
MAX14800- MAX14803
CLR
CLR
CLR
CLR U20 U21 U2n
DIN2
DIN MAX14800- MAX14803
DOUT
DIN MAX14800- MAX14803
DOUT
DIN MAX14800- MAX14803
DOUT
CLK LE
CLK LE
CLK LE
CLR
CLR
CLR
Figure 3. Interfacing Multiple Devices by Daisy-Chaining
12 ______________________________________________________________________________________
Low-Charge Injection, 16-Channel, High-Voltage Analog Switches MAX14800-MAX14803
MAINFRAME HIGH-VOLTAGE TRANSMIT 1 PER CHANNEL 100V MAX RELAY 1 RELAY/CH/PROBE PROBE A PROBE SELECTION 2 TO 4 PROBES CABLE 1 PER CHANNEL 1 TO 2A MAX PROBES TRANSDUCERS 2 TO 4 PER CHANNEL
HV ANALOG SWITCHES 2 TO 4 PER CHANNEL
PROBE B +V
10mA TYP LOW-VOLTAGE RECEIVE 64 TO 128 CHANNELS 1V MAX PROBE C
HIGHVOLTAGE ISOLATION
-V
PROBE D
Figure 4. Medical Ultrasound Application--High-Voltage Analog Switches in Probe
______________________________________________________________________________________
13
Low-Charge Injection, 16-Channel, High-Voltage Analog Switches MAX14800-MAX14803
MAINFRAME HV TRANSMIT 1 PER CHANNEL 100V MAX HV ANALOG SWITCHES 2 TO 4 PER CHANNEL PROBE SELECTION 2 TO 4 PROBES PROBES CABLE 2 TO 4 PER CHANNEL 1 TO 2A MAX TRANSDUCERS 2 TO 4 PER CHANNEL
+V 10mA TYP LV RECEIVE 64 TO 128 CHANNELS 1V MAX RELAYS 2 TO 4 RELAYS/CH/PROBE PROBE A
HIGHVOLTAGE ISOLATION PROBE B -V
PROBE C
PROBE D
Figure 5. Medical Ultrasound Application--High-Voltage Analog Switches in Mainframe
14
______________________________________________________________________________________
Low-Charge Injection, 16-Channel, High-Voltage Analog Switches MAX14800-MAX14803
MAINFRAME HIGH-VOLTAGE TRANSMIT 2 TO 4 PER CHANNEL 100V MAX PROBE SELECTION 2 TO 4 PROBES PROBES CABLE TRANSDUCERS 2 TO 4 PER CHANNEL 2 TO 4 PER CHANNEL 1 TO 2A MAX
RELAYS 2 TO 4 RELAYS/CH/PROBE
PROBE A
LOW-VOLTAGE RECEIVE 64 TO 128 CHANNELS 1V MAX
+V -V
10mA TYP
PROBE B +V -V +V -V
+V -V +V -V
PROBE C
+V -V +V -V PROBE D
+V -V
HIGH-VOLTAGE ISOLATION AND CHANNEL SELECT 2 TO 4 PER CHANNEL
Figure 6. Medical Ultrasound Application--Multiple Transmit and Isolation per Receiver Channel
______________________________________________________________________________________
15
Low-Charge Injection, 16-Channel, High-Voltage Analog Switches MAX14800-MAX14803
Functional Diagram
VDD VPP
CLR
VPP
**
LATCH DIN LEVEL SHIFTER
COM0
* *
VNN NO0
VNN CLK 16-BIT SHIFT REGISTER MAX14802 MAX14803 VPP
**
DOUT LATCH LEVEL SHIFTER
COM15
*
VNN NO15
*
LE VNN
GND
VNN
*BLEED RESISTORS AVAILABLE ON THE MAX14803 ONLY. **OVERVOLTAGE PROTECTION DIODES ARE AVAILABLE ON THE MAX14802 AND MAX14803 ONLY.
16
______________________________________________________________________________________
Low-Charge Injection, 16-Channel, High-Voltage Analog Switches
Pin Configuration
TOP VIEW
COM11 COM12 COM13 COM14 COM15 NO11 NO12 NO13 NO14 NO15 N.C. N.C.
MAX14800-MAX14803
36 35 34 33 32 31 30 29 28 27 26 25
COM10 NO10 COM9 NO9 COM8 NO8 NO7 COM7 NO6 COM6 NO5 COM5
37 38 39 40 41 42 43 44 45 46 47 48
24 23 22 21
N.C. DOUT CLR LE CLK DIN VDD GND N.C. VPP N.C. VNN
MAX14800- MAX14803
20 19 18 17 16 15 14
+
1 N.C. 2 N.C. 3 COM4 4 NO4 5 NO3 6 COM3 7 NO2 8 COM2 9 COM1 10 11 12 NO1 NO0 COM0
13
TQFP 7mm x 7mm
Chip Information
PROCESS: BiCMOS
Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. PACKAGE TYPE 48 TQFP PACKAGE CODE C48-6 DOCUMENT NO. 21-0054
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 17
(c) 2009 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.


▲Up To Search▲   

 
Price & Availability of MAX14803CCM

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X